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abstract
Trajectories of ongoing price change, unbalanced growth, and nonneutral technical progress directed by the

profit-driven production and innovation decisions of capitalists display two outstanding macroscopic features of

late-capitalist development–trendless ratios of the value of output to the value of capital, and trendless shares of

wages and profits in social income–while supporting, as a long-run microscopic outcome of competition alternative

to profit-rate equalization, stationary nondegenerate distributions of capital over an interval of profit rates.
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Stable great ratios and stationary dispersion
of profit rates in unbalanced growth

1 Long-run price theory and ongoing technical change

To make room for continuing technical change in the theory of relative prices and multisector growth is not
easy. The most familiar and least satisfying proposal assigns a common rate of exogenously Harrod-neutral
technical change to every sector, so that an equally rapid growth in the real wage leaves an economy’s
equilibrium prices and activity proportions unchanged (Schefold [1976]). As a basis for studying actual
economies this draws the objections that rates of labor productivity growth show a great deal of variation
across sectors and that innovation is far from Harrod neutral at the level of individual sectors.

Another strategy looks for laws of motion for prices and activities for which a unique price vector and
balanced growth ray constitute an asymptotically stable point of rest so that prices and quantities evolve
to stay within a moving neighborhood of the transient “long-run” equilibria swept out by an ongoing
perturbation of the technology. Duménil and Lévy [1995b] have applied this strategy to classical
“cross-dual” dynamics in two-good economies with some success. And Krause and Fujimoto [1986] have
shown that a process in which output prices are marked up over input costs converges to prices of
production for an arbitrary path of a nonstationary technology. But progress along these lines is limited by
the dearth of economically significant stability conditions for higher-dimensional price and quantity
motions that allow for realistic interactions between the prices and the quantities (Nikaido [1985]).

The alternative that I’ll try out in this paper is to revise the conception of long-run equilibrium so as to
build in endogenous technical change while permitting its profile to vary from sector to sector.

I’ll use a continuous-time model of the production of n goods by means of those goods and homogeneous
labor. As in Salvadori [1998] capitalists operate production activities that map vectors of produced input
stocks and nonproduced labor flows into single-good production flows. Innovation takes place on and
continually displaces a frontier containing those activities that are the most profitable in current prices.
Capitalists on this frontier choose proportional rates of change in their activities’ input-output coefficients
from a convex innovation set so as to maximize their profit rates’ instantaneous rates of change in current
prices, and each capitalist’s constrained-best direction of innovation is given by the vector of the different
inputs’ current shares in her total costs.

I discuss a class of trajectories for prices and the social technology that were first explored by Kennedy
[1972] (and see also Craven [1973] and Orosel [1977]) and that I’ll call quasi-neutral. On these paths prices
and frontier input-output coefficients change at constant but generally unequal proportional rates. Labor
productivity is growing in each sector but at rates that differ across sectors, and nonlabor input
requirements are variously increasing or decreasing. Though they violate the stationarity that is built into
better-known conceptions of long-run equilibrium, these price motions and innovation directions maintain a
constant uniform profit rate on the frontier, and they stabilize inputs’ shares in the frontier capitalists’
costs at the unique configuration that directs the capitalists to opt for quasi-neutrality.

These paths agree with two striking patterns of actual structural change: the divergence of labor
productivities across sectors that I mentioned before, and the Salter [1960] pattern of relative prices that
move in a direction opposite to these movements of relative labor productivities.
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The corresponding market-clearing trajectories of production satisfy a condition that I’ll call value-balanced
growth. Though physical input stocks and output flows diverge, their values in current prices follow a
common exponential path. Though I don’t claim that actual growth is value-balanced, this seems in any
case a better approximation than balanced growth. Balanced growth is in fact decisively rejected, for
example in Whelan’s study [2004] of US NIPA data; Whelan finds that while investment and consumption
goods account for stationary shares of nominal output, a divergence in their physical quantities has been
offset by a long-term decline in the relative price of capital goods. Value-balanced growth under
quasi-neutral innovation also implies that rates of sectoral output growth are increasing in sectors’ rates of
labor productivity growth, a pattern noticed in the data by Fabricant [1940] and many later researchers
(Metcalfe, Foster, and Ramlogan [2005]).

To a growth theorist’s eye these value-balanced paths stand out for their aggregate profile, which is pure
Kaldor: constant value-of-output/value-of-capital ratios, constant class income shares, and constant growth
rates for these value aggregates and for employment-weighted aggregate labor productivity.1

This idealization repays attention for a second reason. By following a quasi-neutral innovation path over
time the economy of this paper uncovers a continuum of activities for producing each of the goods. And
the profitability of operating an activity from one of these technological lineages is described by a
time-invariant decreasing function of the age of the activity.

Say that a capital distribution assigns to each interval of profit rates that proportion of the mass of value of
capital that’s tied up in activities whose profitabilities lie in that interval. I will show that for any
small-enough growth rate of the social mass of value of capital there exists a capital distribution that
reproduces itself under a dynamics of slow capital reallocation regulated by relative profitability, with the
mass so distributed expanding at the given rate. So the model’s aggregate value-balanced growth paths can
be instantiated in the small by a stationary capital distribution.

In effect this argument takes the advice of Farjoun and Machover [1983], reopening the question of an
appropriate competitive boundary condition for long-run prices. In actual capitalist economies the lion’s
share of productive capacity is given over to activities that earn far less than the maximum observed profit
rate. Rather than impose equal profitability on all the operated activities as in the classical price theory
surveyed by Kurz and Salvadori [1995], the paper shows that deterministic profit rate distributions are
supported by a gradual adjustment of capital toward higher returns. Profit rate equalization reappears
here in the less restrictive form of uniform frontier profitability in the different sectors.

These stationary distributions are also a multisector, continuous-innovation cousin of the standing-wave
solutions of one-sector, discrete-innovation models studied in Iwai [2000], Henkin and Polterovich [1991],
and Franke [2000]. They depend for their existence on the unchanging profile of profitability’s decay along
the lineage of discovered activities, an invariance made possible by the quasi-neutrality of innovation and
price changes to which I now turn.

2 Quasi-neutral innovation

Suppose to begin that all production is on the frontier. A production activity is described by a vector
aj (τ) = (a0j (τ) , a1j (τ) , a2j (τ) , ..., anj (τ)) assigned to the date of its introduction τ and defined so that a

1Growing economies that have stationary aggregate ratios despite ongoing change in the composition of output arising
variously from nonstationary consumption demand and nonstationary technology are the subject of several recent papers,
including Acemoglu and Guerrieri [2005]; Ngai and Pissarides [2004]; Föllmi and Zweimüller [2002]; Kongsamut, Rebelo, and
Xie [2001]. For a far more ambitious picture that takes in both forms of structural change see Pasinetti [1981].
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capitalist who runs the activity while employing a flow l of labor and while holding a vector k of the n
goods each yielding a flow of productive services in unit proportion to its nondepreciating stock produces a
flow

min

½
l

a0j (τ)
,
k1

a1j (τ)
,
k2

a2j (τ)
, ...,

kn
anj (τ)

¾
(1)

of the good j.

Capitalists continuously sell their momentary outputs, build up their input stocks with continuous
purchases of produced goods, and buy labor from workers who are continuously purchasing goods for
consumption in markets where a single price vector p (t) rules at t; this includes the wage, p0 (t), and pj (t)
as the price of the jth produced good. In this section I abstract from the state of supply and demand on
these markets to study certain time paths for prices and the distribution of production capacity over an
evolving technology. But in section 18 I’ll come back to confirm that on the corresponding trajectories of
production and spending markets for produced goods are continuously cleared and a constant fraction of
an exponentially expanding workforce is employed.

The ratio of the flow of profit from an activity aj (τ) to the value of stocks tied up in it is the profit rate

rj (τ , t) =
max [pj (t)− p0 (t)a0j (τ) , 0] +

P
i=1 pi (t)aij (τ)πi

p̄ (t) · āj (τ)
, (2)

where p̄ and āj are price and activity vectors with their zeroth, labor coordinates deleted, where πi ≡ ṗi/pi
so that the second term in the numerator carries capital gains or losses on the holdings of input stocks, and
where the first term allows capitalists to refrain from absolutely unprofitable production. As I’ll explain in
section 19 this profit rate controls the evolution of productive capacity since I assume that input purchases
for old production activities are financed out of those activities’ retained current profits.

Innovation is local in the sense that the evolution of activities obeys

daij (τ)

dτ
= âij (τ) aij (τ) , (3)

with âj (τ) a vector of proportional rates of change in the frontier production coefficients chosen at τ by
the innovating capitalists from a time-invariant set of possible profiles of innovation. In particular for each
j let some continuous, differentiable, strictly increasing, strictly convex function, gj , define the set of
possible innovations in the production of the jth good as those points â in <n+1 for which gj (â) ≥ 0. I
assume that innovation possibilities are fertile in the sense that gj (0) > 0 but limited in the sense that
there’s a γj > 0 such that

g (â) ≥ 0, âjj = 0⇒ â0j ≥ −γj . (4)

An innovating capitalist chooses âj (τ) in the innovation set to maximize the partial of r (t, τ) with respect
to τ , which after some manipulation comes out as

∂rj (τ , t)

∂τ
= −ηj · âj (5)

where ηj is the n+ 1-vector with coordinates

ηoj ≡
p0 (t)a0j
p̄ (t) · āj (τ)

(6)
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and

ηij ≡
pi (t)aij
p̄ (t) · āj (τ)

[rj (t, τ)− πi] . (7)

This problem’s solutions are homogenous-of-degree-zero in the numbers ηj ,and it will be helpful to work
with the scalar multiple of them

µj ≡
p̄ (t) · āj (τ)
pj (t)

ηj ; (8)

I’ll call these last numbers innovation weights since
P
i=0 µij = 1. The innovating capitalist’s problem is

then
min
âj
µj · âj s.t. g (âj) ≥ 0; (9)

let âj
¡
µj
¢
be the unique point in <n+1 that solves it.

Now I describe a path for prices and the frontier technology on which innovating capitalists pursue an
unchanging profile of innovation while earning a constant rate of profit. A stationary direction of technical
change and a constant frontier profit rate are ensured if prices evolve at constant proportional rates and if
for every i and j

πj =
d

dt
ln paj = πi + âij

¡
µj
¢

(10)

or
πj − πi − âij

¡
µj
¢
= 0, i = 0, 1, ..., n; j = 1, 2, ..., n. (11)

Appendix A shows that (11) has solutions. I will say that a solution {π∗, µ∗} defines a quasi-neutral
direction of price change and technical progress.

On a quasi-neutral path
π∗j = µ

∗
j ·
¡
π∗ + âj

¡
µ∗j
¢¢

(12)

while the fertility of innovation implies that for every µj

µj · âj
¡
µj
¢
< 0, (13)

so it must be that
πj − µ∗j · π∗ < 0, j = 1, 2, ..., n. (14)

But since µ∗j · π∗ is just a weighted average of the rates of price change, the latter inequalities require that
in fact

π0 > πj , j = 1, 2, ..., n; (15)

if the weighted averages µ∗j · π∗ are to exceed πj for each produced good j, labor as the only nonproduced
input must have a price growing faster than the rest. It follows that the real wage measured in terms of an
arbitrary commodity is increasing on any quasi-neutral path. By (11), so must be each sector’s labor
productivity.

As Kennedy [1972] and Craven [1983] pointed out, quasi-neutrality is a kind of generalized Harrod
neutrality. It permits the negative or positive augmentation of individual produced inputs. But it requires
the positive augmentation of labor in every line of production and–from (11)–zero augmentation of each
good in the production of its own kind.

It’s especially striking that the necessity of economywide labor productivity growth–the signature of
capitalist development–is an implication of stationarity in the direction of technical change alone. I mean
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that in deriving it I haven’t made any assumptions about the shape of the innovation set, apart from the
possibility of positive labor productivity growth. Nor have I coupled the innovation process to any specific
model of income distribution, labor supply, or capital accumulation. The necessity of labor augmentation is
a pure consequence of the fact that labor is the only commodity that’s not produced for profit. This
conclusion is a sort of technological-evolutionary correlate of the classical insight–expounded for example
by Burgstaller [1994] and Foley [2003b]–that the qualitative behavior of capitalist production is shaped by
the differential conditions of reproduction of its various inputs.

Notice that if some {π∗, µ∗} is a solution, so is a {π∗ + a, µ∗} with a an arbitrary n+ 1-vector of identical
components. Since these solutions have the same technical change profile, the same time paths for relative
prices, and profit rates for all activities that differ by the common term a, I’ll normalize them by pegging
the rate of change of one of the prices to a given real number. In particular let π∗0 = 0 so that if the wage
rate in the initial condition of a quasi-neutral path is 1, all subsequent prices are in terms of labor.

3 Value-balanced growth

If production of the jth good is increasing exponentially at gj , purchases by the jth producers of the ith
good have the growth rate

gij = gj + âij (16)

and so on the quasi-neutral path
gij = gj + π∗j − π∗i . (17)

Given that price and technical changes are quasi-neutral, then, the values of the different sectors’
production and input flows and input stocks in current prices are in constant proportion to one another,

gj + π∗j − gi − π∗i = 0, (18)

if and only if
gij = gi, (19)

for all i and j so that the output of each good is increasing at the rate needed to supply the input
requirements of all the other activities. Where innovation is quasi-neutral, market clearing implies and is
implied by value-balanced growth.

Let g be the common growth rate of the value-of-output and value-of-capital masses on such a trajectory.
Since âoj = π∗j the growth rate of production employment in each sector is also g = gj + π∗j . If the potential
workforce grows like ent, a growth path with g = n maintains a constant ratio of employed to available
workers. Growth rates for the production of the produced goods that stabilize the employment ratio fall
out from

g∗j = n− π∗j ; j = 1, 2, ..., n (20)

As the money wage equals 1 forever, the economy’s wage bill is also increasing at n on such a path. So if
workers, the only consumers, consume their wages entirely while devoting a constant fraction of spending
to each of the goods they consume, consumption purchases of the jth good also have a growth rate equal
to the righthand side of (20) . As befits the economy described by Fabricant, the growth rates of production
in (20) are increasing in the sector-specific rates of labor-productivity growth.

I’ve now shown that if markets for goods and labor clear in the initial condition, they remain clear on a
growth path that satisfies (20) with quasi-neutral technical and price changes and a proportional expansion
of the values of input stocks and output flows. To secure that value-balanced expansion in turn, it would
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be enough to equalize profit rates at the frontier while assuming that investment is proportional to
profitability and that capacity is costlessly adjusted to remain at the frontier. But I think it will be more
interesting to allow for the fact that most production is subprofitable.

4 Slow capacity adjustment

I’ll now suppose that productive capacity, rather than being piled up at the frontier, is distributed over the
continuum of activities aj (τ) that’s been traced out by the innovation process. The stocks of the n
produced goods are shared out between sectors and smeared over the activities within the sectors according
to continuous densities mj (τ), and the produced flow of good j is represented by integrating (1) over that
continuum weighted by the mj (τ)s, a well-defined operation given the continuity of the aj (τ)s and the
mj (τ)s.

I assume that profits from old activities are either plowed back to finance investment in those activities or
sent to the frontier to establish capacity in the newest activities. When frontier production earns a profit
rate R, spending on those activities is had by summing over j the integral over τ of

ξ (rj (τ , t) , R) cj (τ , t)

where the intensity of diversion to the frontier is some function ξ (r,R) that satisfies

0 < ξ (r,R) ≤ r and ∂ξ (r,R)

∂r
< 0 <

∂ξ (r,R)

∂R
(21)

for R > r > 0 and with ξ (r,R) = 0 for r ≤ 0 and where
cj (τ , t) ≡ mj (τ) p̄ (t) · k (t) . (22)

Let

Cj (τ , t) ≡
Z τ

−∞
mj (σ) p̄ (t) · k (t) dσ,

report the value of the capital mass committed to j-producing activities introduced as of τ . Then for t > τ
this expands according to

∂Cj (τ , t)

∂t
=

Z τ

−∞
[rj (σ, t)− ξ (rj (σ, t) , R)] cj (σ, t) dσ. (23)

This description of investment is familiar from modern-classical modelling of price and investment
dynamics (Nikaido [1985], Duménil and Lévy [1993]), where it’s commonly supposed that the relative
growth rates of industries’ capital stocks are increasing in their relative profitabilities. It’s also a
multisector counterpart to the single-good process of innovation diffusion via differential growth studied by
Franke [2000] and Iwai [2000]. Duménil and Lévy [1998] have shown that it can be rationalized by the costs
of capital adjustment that confront financially-constrained profit-maximizing investors.

Notice as well that by substituting for ξ the functions

ξj (r,R) = r −
P
i=1 pi (t)aij (τ)πi
p̄ (t) · āj (τ)

(24)

you’d have that the productive capacity of each activity is fixed once and for all by the initial investment in
it. The resulting capital distribution would resemble the outcomes of a vintage-capital model like that of
Solow, Tobin, von Weizsäcker, and Yaari [1966], with capital as a function of the age of activities decaying
exponentially from the newest activity. I don’t make much of this, though, because it seems that actual
capital distributions (for example the ones depicted in Wells [2001]) are more often hump-shaped than
monotonic.
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5 Stationary capital distributions

Consider an economy that’s following a quasi-neutral path of price and technical change π∗, â∗ so as to
maintain a constant profit rate R on activities at the production frontier. In the terms of Anwar Shaikh’s
development of Marx’s discussion of competition in volume 3 of Capital, the occupants of this frontier are
“regulating capitals” whose changing technology dictates the path of prices faced by the less efficient
capitals (Botwinick [1993]).

The profitability of running an activity in the jth lineage is a time-invariant function of the time s ≡ t− τ
elapsed since its discovery,

rj (s;R) ≡
max[eπjs − µ∗oj , 0] +

P
i=0 e

πisη∗ijπ
∗
i / (R− π∗i )P

i=0 e
πisη∗ij/ (R− π∗i )

(25)

which is decreasing in s and which approaches a negative limit as s approaches ∞.

Let a function
Ψj (τ , t) ≡ Cj (τ , t) e−gt

give the proportion of total value of capital at t, egt, that’s dedicated to j-producing activities introduced
as of τ . I’m looking for Fj (s) and θj that satisfy for all t

Ψj (τ , t) = Ψj (t, t)− Fj (t− τ) = θj − Fj (s) (26)

so that Fj (s) is the time-invariant proportion of capital tied up in j-producing activities no older than s
and θj is the time-invariant capital share of the jth sector. Where Fj (s) exists it follows that

cj (τ , t) e
−gt =

∂Ψj (τ , t)

∂τ
= −∂Ψj (τ , t)

∂t
=
dFj
ds
≡ fj (s) . (27)

With the time evolution of Cj (t, τ) given by (23) you have

∂Ψj (τ , t)

∂t
=

Z τ

−∞
[rj (υ, t)− ξ (rj (υ, t))] cj (υ, t) e

−gtdυ − gΨj (τ , t) , (28)

and then by (26)

fj (s) = −
Z ∞
s

[rj (σ)− ξ (rj (σ))] fj (σ) dσ + g (θj − Fj (s)) . (29)

Differentiating through (29) gives

dfj (s)

ds
= [rj (s)− ξ (rj (s))− g] fj (s) . (30)

Evaluating both sides of (29) at s = 0 and summing over j implies thatX
j

fj (0) =
X
j

Z ∞
0

ξ (rj (s)) fj (s) ds (31)

given that

g −
X
j

Z ∞
0

rj (s) fj (s) ds = 0 (32)
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as all profits are reinvested and the value mass has g as its growth rate.

Functions fj (s) that solve (30) with initial conditions that satisfy (31) and normalized so as to integrate to
1 thus describe a stationary capital distribution over the age continuum of activities. And where sj (r)
assigns to r the s that solves rj (s;R) = r, the density

φ (r) ≡
X
j

fj (sj (r))

describes a distribution of capital by profitability that reproduces itself under the investment dynamics of
the last section.

In Appendix B I show that distributions like this exist for each quasi-neutral price and technology path
and for a small-enough growth rate g. The next step is to compute explicit distributions for particular
numerical innovation paths and to compare these with actual profit-rate distributions like the ones in Wells
[2001]. This paper has taken a first step by spelling out a many-commodity model in which reinvestment
regulated by differential profitability generates self-reproducing distributions.
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Appendix A. Existence of quasi-neutral price and technical evolution

Define the family of sets

Zε ≡
©
π ∈ <n+1 |π0 = 0 and ∀j 6= 0,−ε ≥ πj ≥ −λj

ª
, (33)

parametrized by small positive numbers ε, and the functions

αj (π) = sup
©
α
¯̄
g
¡
απj − απ

¢
= 0

ª
, (34)

where πj is the n+ 1-vector with components equal to πj . Let π
t
j obey

πt+1j = min
£
−ε,αj

¡
πt
¢
πtj
¤
, j = 1, 2, ..., n (35)

with πt0 equal to zero for all t. By construction g is zero at the point αj (π
t)πj,t − αj (π

t)πt, whose jth
coordinate is zero, so its 0th coordinate αj (π

t)πtj is greater than or equal to −λj . So this recursion sends
points of Z to points of Z. Also it’s continuous as the functions αj (πt) are continuous. So it has a fixed
point. Now suppose that for some j

lim
ε→0

sup
π∈Zε

αj (π)πj = 0. (36)

Then writing the π in Zε that gives the greatest αj (π)πj as πε you’d have

lim
ε→0

g
¡
αj (πε)π

j
ε − αj (πε)πε

¢
= g

³
− lim

ε→0
αj (πε)πε

´
≥ g (0) > 0 (37)

violating the definition of αj (π). So in fact αj (πε)πjε must have a negative upper bound, say −ζ.
Therefore by choosing ε < ζ you can ensure that a fixed point of the corresponding mapping has

αj (π
∗) = 1 (38)

for every j, from which it follows πj∗ − π∗ lives on the innovation frontier. If you then put

µ∗j =

"X
i

∂gj
¡
πj∗ − π∗

¢
∂âij

#−1
∂gj

¡
πj∗ − π∗

¢
∂âij

, (39)

so that µ∗j is the vector of innovation weights that rationalizes innnovation in the profile π
j∗ − π∗, you

know that there’s a {π∗, µ∗} satisfying (11) with π∗ ≤ 0 and π∗0 = 0.
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Appendix B. Existence of stationary capital distributions

Let

βj (R) ≡
Z ∞
0

ξ (rj (s;R) , R) e
−gs+

R s

0
[rj(σ;R)−ξ(rj(σ;R),R)]dσds. (40)

This is continuous in R. Since R ≥ ξ (rj (s;R) , R) ≥ 0 it has βj (0) = 0. Since ξ (rj (s;R) , R) > 0 for
R > r > 0 it has βj (R)→∞ as R→∞.

Since a solution of (30) satisfies

fj (s) = fj (0) e
−gs+

R s
0
[rj(σ;R)−ξ(rj(σ;R),R)]dσds, (41)

(31) is equivalent to X
j

fj (0) =
X
j

βj (R) fj (0) . (42)

As R goes from 0 toward ∞, so does the righthand side of (42). So for any fj (0)s there exists an R∗ such
that (42) is satisfied. If g is not too big, R∗ > g. So an arbitrary vector of capital shares

θj = fj (0)

Z ∞
0

e
−gs+

R s
0
[rj(σ;R)−ξ(rj(σ;R),R)]dσds (43)

can be supported by choosing suitable fj (0)s. So you can in particular choose them to match the capital
shares required by a market-clearing initial condition of the quasi-neutral, value-balanced growth path.
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Gérard Duménil and Dominique Lévy, 1998. Capital under a financial constraint: the classical investment
function. Journal of economic theory.

Solomon Fabricant, 1940. The output of manufacturing industries: 1899-1937. NBER

Emmanuel Farjoun and Moshe Machover, 1983. Laws of chaos. A probabilistic approach to political
economy. London: Verso.

William Fellner, 1961. Two propositions in the theory of induced innovations. Economic journal. 282:
305-308.

Reto Föllmi and Josef Zweimüller, 2002. Structural change and the Kaldor facts of economic growth.
unpublished, University of Zurich.

Duncan Foley, 2003b. Unholy trinity: labor, capital, and land in the new economy. London: Routledge.

Reiner Franke, 2000. An integration of Schumpeterian and classical theories of growth and distribution.
Structural change and economic dynamics, 11: 317-336.

Gennadi Henkin and Viktor Polterovich, 1991. Schumpeterian dynamics as a nonlinear wave theory.
Journal of mathematical economics, 20: 551-590.

Katsuhito Iwai, 1984. Schumpeterian dynamics, I: an evolutionary model of innovation and imitation.
Journal of economic behavior and organization, 5: 159-190.

Katsuhito Iwai, 1984. Schumpeterian dynamics, II: technological progress, firm growth, and economic
selection. 5: 321-359.

Katsuhito Iwai, 2000. A contribution to the evolutionary theory of innovation, imitation, and growth.
Journal of economic behavior and organization, 43: 167-198.

Charles Kennedy, 1973. A generalization of the theory of induced bias in technical change, Economic
journal

12



Piyabha Kongsamut, Sergio Rebelo, and Danyang Xie, 2001. Beyond balanced growth. Review of economic
studies, 68(4): 869-882.

Ulrich Krause and Takao Fujimoto, 1986. Ergodic price setting with technical progress. in Willi Semmler,
editor, Competition, instability, and nonlinear cycles: Proceedings of an international conference.
Springer-Verlag.

Heinz Kurz and Neri Salvadori, 1995. Theory of production. New York: Cambridge.

J. Stan Metcalfe, John Foster, and Ronnie Ramlogan, 2005. Adaptive economic growth. Cambridge journal
of economics, forthcoming.

Hukukane Nikaido, 1985. Dynamics of growth and capital mobility in Marx’s scheme of reproduction.
Zeitschrift für Nationalœkonomie, 45: 197-218.

Gerhard Orosel, 1977. Capital gains and losses and the existence of a steady state in multisector models
with induced technological progress. Economic journal, 87(346): 315-323.

Luigi Pasinetti, 1981. Structural economic dynamics. Cambridge.

W. E. G. Salter, 1960. Productivity and technical change. Cambridge.

Neri Salvadori, 1998. A linear multisector model of “endogenous” growth and the problem of capital.
Metroeconomica 49(3): 319-335.

Bertram Schefold, 1976. Different forms of technical progress. Economic journal. 86: 806-19.

Anwar Shaikh, 2005. Economic policy in a growth context: a synthesis of Harrod and Keynes.
unpublished, New School.

Robert Solow, James Tobin, Carl Christian von Weizsäcker, and Menahem Yaari, 1966. Neoclassical
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